ASSOCIATION OF BAY AREA GOVERNMENTS

F-306

Representing City and County Governments of the San Francisco Bay Area

ABAG

May 9, 2002

VIA FACSIMILE & US MAIL

Dan Ray CALFED Bay-Delta Program 1416 Ninth Street, Room 1155 Sacramento, CA 95814

Dear Mr. Ray:

The ABAG-CALFED Task Force and the San Francisco Estuary Project are pleased to respond to your request for public input on reviewing the CALFED Ecosystem Restoration Program's Selection Panel recommendations. On May 1, 2002, we convened a joint workshop to give an opportunity for the diverse interests of the Bay Area to review the CALFED Ecosystem Restoration Program's Selection Panel recommendations. The goal of this workshop was to identify how those recommendations fit with the priorities identified in the San Francisco Estuary Project's Bay-Delta Environmental Report Card 1999-2001 and to identify any issues for CALFED relative to the recommendations. This letter summarizes the input received at our workshop on specific issues as well as larger CALFED implementation issues.

The Association of Bay Area Governments (ABAG) represents the nine counties and the many cities of the Bay Area. ABAG is interested in providing input as elements of the CALFED plan are implemented that affect the Bay Area. As such, ABAG established the ABAG CALFED Task Force, a consensus based forum that includes representatives of water districts, local government, and many of the stakeholder groups that have an interest in CALFED implementation.

The San Francisco Estuary Project is a cooperative federal-state partnership organized through the US Environmental Protection Agency's National Estuary Program. The project brought together 100 private, government, and community interests to develop a consensus plan, the Comprehensive Conservation and Management Plan (CCMP), which was signed by the Governor and the US EPA Administrator in 1993. In August 2001, the S.F. Estuary Project brought together its stakeholders to revisit the top priorities for CCMP implementation and to review progress. The results of this are detailed in the Bay-Delta Environmental Report Card 1999-2001.

In recognition of the common interest between the SF Estuary Project and the ABAG CALFED Task Force in promoting environmental restoration, the Task Force Ecosystem Subcommittee and the S.F. Estuary Project Implementation Committee have been working cooperatively to address issues related to implementation of the CALFED Ecosystem Restoration Program in the Bay Area.

Roughly 15 people attended the May 1st Workshop. Two participants also submitted written comments. One member of the task force offered comments at the April 29, 2002 ABAG-CALFED task force meeting. General comments on CALFED implementation are as follows:

- 1. As the state and federal budgets become tighter, there is a need for much greater clarification about funding sources. In particular, support needs to be identified for programs at risk because of the amount of general fund dollars they receive or because of their lack of a federal authorization. There is a high level of concern about the potential lack of funds for previously approved projects. Failure to address this important issue creates the potential for the program to become "unbalanced" in its implementation
- 2. The Science Program is critically important. One component of the Science Program that the workshop participants wanted to call particular attention to is the identification of indicators and performance measures. This is critically important to understanding how the projects, past and future, are performing, what progress is being made towards the goals, and where gaps exist. This issue is important in its own right but is also a key to obtaining future funding.
- 3. Using a list provided by CALFED of projects that listed any of the nine Bay Area counties, staff identified how those projects fit with the CCMP priorities. The results of that analysis are attached to this letter. Generally, the projects are consistent with the priorities of the CCMP.

Comments relative to specific recommendations of the Selection Panel are as follows:

Reference Number 90: Bahia Acquisition and Tidal Wetland Restoration: Local support for this project is extremely high. We appreciate the recommendation to fund this project 'as is' and urge the Selection Panel to not change this recommendation. The Bahia acquisition is consistent with multiple CCMP priorities and is consistent and complimentary to other local efforts. The City of Novato and Marin County support the project. The voters of Novato have previously voted 70% against proposals to develop the site and the City sees this as an excellent apportunity that may be lost if there is any delay. When combined with CALFED's previously funded commitment to the Hamilton project, it will provide significant public access. The project falls within the San Pablo Bay watershed and is consistent with the regional planning for that area.

Reference Numbers 17, 31, 90, 138, and 161: Support was expressed for these projects. Some are important components of regional efforts. Others, such as #161, are important because they help update local plans that are very out of date.

Reference Numbers 129, 130, 131, and 69: These projects to address methyl mercury should be funded. However, the Selection Panel should recommend inclusion of an outreach and education component so that the results of the research can be shared with the communities most at risk to exposure to methyl mercury through consumption of fish and wildlife. Research conducted by the Silicon Valley Toxics Coalition has shown a very low level of awareness of this issue in the communities potentially impacted.

Reference Number 30: The Selection Panel correctly identified the need to address concerns of the City of Oakley with the Dutch Slough Project. However, the project should also address the water quality, operational, safety and security concerns of Contra Costa Water District so that it does not adversely impact the Contra Costa Canal that is immediately adjacent to the site. The project must also be designed and implemented so that it does not adversely impact water quality at Delta diversion sites that supply urban water districts.

Thank you for the opportunity to provide input into this important decision. Environmental restoration of the Bay and Delta enjoys broad support in the Bay Area and we appreciate the commitment the CALFED program has shown to restoration projects in the nine Bay Area counties.

Sincerely,

Mike Rippey

Board of Supervisors, County of Napa Chair, ABAG-CALFED Task Force

Greg Zlomick

Board of Directors

Santa Clara Valley Water District

Vice-Chair, ABAG-CALFED Task Force

Faurene P. Klb-

Lawrence P. Kolb

Chair Implementation Committee

San Francisco Estuary Project

/vm

Initial Panel Recommendations Compared to Bay-Delta Environmental Report Card September 2001 Revised Priorities

				CCMP Priorities				
ERP Project Reference Number	Expand, restore, and protect Bay and Detta	Reduce the impact of invasive spacies on the Profect and invasive spacies on the Profect and Expand, restore and protect Bay prevention, control, wetersheds and Delta endication, and Estuary endication.	Protect and restore wetersheds throughout the	Create incentives that encourage governments, landowners, and communities to protect and restore the Estuary.	Minimize or eviminate poliulion of the Estuary from all sources	Increase public awareness of the Estuary's natural resources and the impacts of human activity on them	Promutgate baseline inflow standards for inflow standards for program to address and Sulson Bays to all key CCMP protect and restore issues.	Expand the inflow standards for San regional monitoring Francisco, San Pablo, program to address and Suison Bays to all key CCMP probed and restore the Estuary ecosystem
•			×					
17	×							
2. 85					×			
22		×						
29	×		1					
30	×							
<u>ب</u>	×							
63		×						
69						×		
7			×					
80	×							
06	×							
112			1					
113		×						
129					×			
130					×			
131					×			*
138								•
150	×							
151		×						

increase public Swareness of the Expand the inflow standards for San Estuary's natural regional monitoring Francisco, San Pablo, resources and the morpham to address and salve for the man assure solution all key CCMP protect and restore the activity on them						A CANADA STATE OF THE STATE OF									***************************************		×	
Create incentives that Minimize or encourage governments, eliminate fendowners, and communities to protect Estuary from all and restore the Estuary.			×			*							×	×	×	×		
Reduce the impact of mussive species on the Protect and restore. Estuary through restore and protect Bay prevention, control, watersheds and Della eradication, and throughout the wettands education.					ж		×	×				×						
ERP Project Reference Number	154	159	161	183	185	\$ 196	199	205	207	208	209	215	228	234	237	242	248	253

Clean Estuary Partnership

CALFED Bay-Deka Program

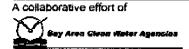
Mr. Daniel Ray CALFED Bay-Delta Program 1416 9'th Street Sacramento, CA 95814

May 10, 2002

Re: Comments on the 2002 CALFED ERP Proposal Package

Dear Mr. Ray,

Thank you for the opportunity to comment on the Ecosystem Restoration Program's 2002 proposal package and review process. The Clean Estuary Partnership (CEP) is a collaborative effort between the San Francisco Bay Regional Water Quality Control Board (SFRWQCB), the Bay Area Clean Water Agencies (BACWA), and the Bay Area Stormwater Management Agencies Association (BASMAA). The mission of this partnership between local governments and the State's water quality control authority is to develop and implement plans to attain water quality standards. As such, we are very interested in CALFED projects that are directly or indirectly related to water quality standards.


We appreciate the level of effort that went into the scientific and administrative review of the proposals. That review process has produced an outstanding package of projects that will likely lead to significant improvements in the San Francisco Bay ecosystem falling within the CALFED solution area. There are eighteen proposals in the package that have direct overlap with our plans to attain water quality standards (Table 1), and another eighteen that provide indirect benefits. We have some specific comments regarding the feasibility of proposed wetland restoration projects, the importance of results from previously funded CALFED projects, linkages between CALFED projects and water quality standards, the need to fund effective outreach for environmental justice, the need to address endocrine disrupting compounds, pesticide-related projects, the importance of exotic and invasive species proposals, and selenium-related projects.

Feasibility of Wetland Restoration Projects

The package includes four wetland restoration projects in the Bay Area, totaling approximately \$12 million (proposals #29, #17, #11, and #90). A key factor affecting the

4235 Piedmont Ave, Oakland 94611 (510) 420-1570

feasibility of proposed wetland restorations is the adequacy of adaptive management plans with respect to monitoring for mercury methylation and bioaccumulation. Mercury in the aquatic ecosystem of San Francisco Bay is a limiting factor for the success of endangered wildlife, such as the California Clapper Rail. Wetlands are known to have the potential for enhanced mercury methylation due to their microbial communities, and enhanced methylmercury bioaccumulation due to their trophic complexity. Although the proposed restoration projects anticipate significant habitat benefits for the California Clapper Rail, there is no discussion within the proposals themselves as to how monitoring plans will quantify mercury risks vs. habitat restoration benefits.

The package overall very likely contains the scientific studies needed to provide such a risk assessment. For example, proposal #90 proposes to breach a levee between existing subsided Baylands and San Pablo Bay to restore tidal wetlands, but does not discuss what affect this could have on the net flux of methylmercury to San Pablo Bay. Proposal #129 contains much of the science needed to answer that question. All San Francisco Bay-Delta mercury monitoring studies that are "considered as directed actions" (i.e., #234, #228, #196, and #129) should be implemented concurrently with wetland restoration projects.

The proposed habitat restoration project at Big Break (proposal #29) will restore tidal marsh at the mouth of Marsh Creek. Previous studies have demonstrated that significant mercury loads are discharged from mining waste from the inoperative Mt. Diablo mercury mine into Marsh Creek. One question that could be reasonably asked in a public process is whether it makes sense to restore a tidal marsh immediately downstream of an unremediated mercury mine. The Contra Costa Water District's water supply intakes are also near this project area. Since the quality of municipal intake water affects the quality of discharged municipal wastewater, there is additional concern about a restoration project that ignores a nearby documented mercury source. The feasibility of proposal #29, with respect to water quality standards, would be greatly enhanced by a plan to reduce mercury loads discharged into Marsh Creek from the Mt. Diablo Mercury Mine.

Important Remaining Products from Previously Funded CALFED Projects

The integrated mass balance assessment of mercury in the Bay Delta (#18) is an extension of a previously funded (1999-2001) CALFED mercury project, which has produced science information critical to mercury strategic planning in the San Francisco Bay region. The 1999-2001 CALFED mercury project included specific mercury source identification tasks that were to provide site maps, summaries of in-place mining waste, estimates of offsite transport, and estimates of remediation costs. In a December 20, 2000 comment letter regarding the proposed Total Maximum Daily Load (TMDL) for mercury in San Francisco Bay, the United States Environmental Protection Agency (USEPA) expressed concern over the lack of quantitative information regarding plans to reduce

mercury loads from inoperative mines in the Central Valley. The deliverables from the previously funded CALFED mercury project directly address load estimates and economic analyses needed to establish a TMDL for mercury. We look forward to reviewing them at the earliest possible opportunity.

Previously and currently funded mercury source assessment work appears to be focused on the Sacramento River Basin, although the CALFED mercury project has also identified a mercury bioaccumulation gradient within the San Joaquin River Basin near Mud Slough. The New Idria Mercury Mine, the second largest historic producer of mercury in North America, drains into the Panoche Fan, which is episodically flushed into the San Joaquin River near Mud Slough. Mercury source assessments should include known mining legacy sources within the San Joaquin River drainage.

In addition to loads assessments, contract funds provided by the San Francisco Bay Regional Water Quality Control Board have extended the CALFED Mercury Project into the entire San Francisco Bay estuary. The resulting analyses of methylmercury concentrations in sediments and in avian eggs are vital pieces of information for risk assessment and development of numeric targets. The funding partnerships between the SFRWQCB and the CALFED Mercury Project team, as well as the team's accessibility and enthusiasm, have improved the quality of science used to support policy decisions in the San Francisco Bay Region; we thank all team members for their thoughtful comments and diligent efforts.

Linkage to Water Quality Standards

The CEP's interest in attainment of water quality standards is shared by the State Water Resources Control Board (SWRCB) and the USEPA, which are both CALFED agencies. Our comments regarding mercury loads and methylation highlight the need to explain connections between CALFED-funded projects and water quality standards. The mercury strategic planning workshop proposed by the CALFED Science program is an important forum for linking the mercury science funded by CALFED to impending regulatory actions, such as development of tissue-based water quality objectives for methylmercury and implementation of mercury TMDLs.

The CALFED ERP has brought together some of the best scientific minds in the world to work on complex problems of mercury loading, cycling, and accumulation in the food web. Although the proposal package can't be expected to provide final answers to all adaptive management questions, it does represent a significant and well-planned investment of public resources in solutions to public problems. It would be helpful to make sure that the USEPA and the SWRCB are fully briefed as to how the science produced relates to attainment of water quality standards and implementation of TMDLs. This includes discussion of how proposed wetland restorations will affect mercury

bioaccumulation in the San Francisco Bay ecosystem, how CALFED projects have contributed to identification of controllable mercury loads, and how scientific information developed will affect adaptive management decisions regarding mercury.

Effective Outreach and Environmental Justice

Outreach to the public is an important part of the linkage between science and policy. Effective outreach is especially important to attain the environmental justice goal of providing people with equal opportunity for significant, meaningful engagement in public decisions affecting public health. Subsistence fishers are concerned about factors that affect concentrations of bioaccumulative pollutants and endocrine disrupting compounds (EDCs) in fish. But the CALFED ERP proposal package did not contain sufficient funding to help underserved communities understand the links between CALFED-funded projects and the beneficial use of fishing. An additional directed action should be included in the annual work plan to fund a proposal connecting local stakeholder groups with scientists and policy makers who can help people consider the available science information and meaningfully participate in policy discussions related to CALFED-funded projects.

Need to Address Endocrine Disrupting Compounds (EDCs)

Preliminary information from the United States Fish and Wildlife Service indicates that EDCs, such as certain chlorinated hydrocarbons, may also be limiting factors for the success of endangered wildlife. The 2002 proposal package does not contain any assessment of EDCs or their effects in the Bay-Delta. Some assessment of EDC occurrence and effects should be considered as a directed action in your annual work plan in order to ensure that the beneficial uses of wildlife habitat and protection of rare and endangered species are restored and protected.

Pesticide application and monitoring

The proposal to monitor pyrethroid pesticides (#242) will directly help in the characterization and assessment of water quality within the bay, delta, and tributaries. This is particularly important as the pesticide market is shifting toward these newer pesticides. Development of analytical test methods capable of detecting these pesticides at ecologically relevant levels will be essential for tracking their fate and effects in the ecosystem. We fully support the goals and approach of proposal #242.

The evaluation of alternative agricultural practices (#213) is an important piece of the economic analysis needed for implementation planning of an agricultural pesticide TMDL. It has the potential to provide useful information as to how conservation tillage and cover cropping can reduce sediment, nutrient, and pesticide loads. However, the

proposal does not indicate what pesticides will be evaluated, and none of the proposed sustainability indicators directly addresses water quality. Task 1 of proposal #213 should strategically determine which pesticides would be of greatest concern for water quality and ensure that the study evaluates runoff of these pesticides. Task 2 should include attainment of water quality standards as an indicator.

The proposal to control purple loosestrife (#22) has made a substantive case for the need to prevent the spread of this noxious weed. We support the use of integrated pest management, and would like to see that concept reinforced. Application of the herbicide Rodeo cannot be considered benign just because it's application will comply with the label. Compliance with pesticide-related laws and regulations does not, by itself, ensure that applications will not cause a violation of water quality standards. This is a concern to us because, with a 35 day half-life due to hydrolysis, glyphosate (the active ingredient of Rodeo) released into the aquatic ecosystem upstream can reach San Francisco Bay. The proposal mentions that an NPDES permit for application will be applied for "if necessary." Our understanding is that applications of aquatic herbicides require NPDES permits. The project could choose to operate pursuant to the Statewide NPDES general permit. That general permit contains specific monitoring requirements and requires Best Management Practices consistent with integrated pest management principles. While proposal #22 contains reasonable funds for water quality monitoring, the feasibility of successfully implementing NPDES monitoring requirements for herbicide application would be enhanced by a clear statement as to beneficial uses potentially affected, levels of concern for glyphosate, and the analytical detection limits proposed.

Exotic and Invasive Species

Introduction of exotic and invasive species is a critical problem threatening the beneficial uses of San Francisco Bay. Invasive species not only directly degrade habitat but also, as observed with the invasive Asian clam, Corbicula fluminea, can exacerbate bioaccumulation of toxic pollutants such as selenium. Given the current legislative restrictions on the direct regulation of ballast water discharge, the proposed outreach projects (#185, #215) are critical to effectively reduce introduction of invasive species. In conjunction with the anticipated SWRCB report to the legislature on best attainable technology, these projects constitute important steps towards eliminating vectors of invasive species. We fully support the goals and approaches of proposal #185 and #215, and would like to see more projects of this kind funded.

Management of Suisun Marsh

Suisun Marsh is on the California list of impaired waterbodies (the "303-d list") due to low dissolved oxygen concentrations. Low dissolved oxygen is also a concern for mercury methylation, which is mediated by anaerobic bacteria. Receiving water

monitoring in the Suisun Marsh region demonstrates a strong correlation between low dissolved oxygen and methylmercury concentrations. Because of the low dissolved oxygen conditions in Suisun marsh, and because the CALFED mercury project has identified enhanced bioaccumulation of mercury in avian eggs in the Suisun Bay region, we are very interested in projects related to Suisun Marsh.

The proposal to update individual ownership adaptive management habitat plans (proposal #161) is a golden opportunity to communicate with landowners in Suisun marsh regarding the connection between pond management and dissolved oxygen in adjacent receiving waters. The proposal is not, however, funded at a level sufficient to make any quantitative links between adaptive management plans and receiving water quality. We fully support the goals and approach of proposal #161, and ask the CALFED ERP to consider an additional directed action in its annual workplan to develop links between the Suisun Marsh adaptive management plans and water quality, and to provide a stakeholder forum to discuss the importance of attaining the dissolved oxygen water quality standard.

Selenium

The proposal to assess selenium hazards to birds (#234) is an important contribution to selenium target setting. We fully support the goals and approach of proposal #234.

The Big Break restoration proposal (#29) proposes to monitor for selenium, stating that there are refineries nearby. While we support selenium monitoring, the discussion is perplexing with respect to selenium sources, given that the nearest refinery is twenty miles downstream. Project proponents should include an objective discussion of all selenium sources, including agricultural drainage, when revising proposal #29 for consideration as a directed action.

The water recycling via membrane technology proposal (#249) could produce useful selenium load reduction options. We understand that if the first phase, testing the nanofiltration technology is successful, the project will proceed to test the full reverse osmosis system. We fully support the goals and approach of proposal #249, and agree with the reviewer comment that the project should be coordinated with a regional plan to reduce selenium loads.

Again, we appreciate the opportunity to comment on the proposal package, and took forward to working with you in the future on collaborative efforts to restore and protect the aquatic ecosystem of San Francisco Bay through implementation of Water Quality Standards.

If you have any questions, please contact our Program Coordinator, Dr. Andrew Gunther, at 510-420-1570 (gunther@amarine.com).

Best regards,

Donald Freitas, Vice-chairman, Executive Management Board

Clean Estuary Partnership

Proposal#	Title	Overlap with CEP Goals	Amount
#234	Assessing the hazards of mercury and salengin to the reproductive success of birds.	Mercury and Selenium	\$394.922
#22	Expanded Prevention, Ostoction, and Control of Pulple Locsestrie in the CALFED Bay-Delta Watershed	Pesticide Texicity	\$457,162
#185	West Coast Ballast Cutreach Project Development and implementation of Bioaccumulation— Based Mercury Monitoring in Support of Restoration. Remediation, and the Regulatory Process for Cache Creek, Prospect Island and Adjacent Fracts, the Yolo	Mydsive Species	\$526,259
#196	Sypass, and Cosumnes River Mercary in pinds of the Bay/Delta Watershed - adverse	Mercury	\$895,571
#228 #129	effects to reproduction and patterns of beaccumulation. Mercury and Methylmercury Processes in North San Francisco Bay Tidal Wetland Esosystems.	Mercuny Mercuny	\$1,080,855 \$1,108,380
#29	Big Break and Marsh Crook Water Quality and Habitar Restoration Program	Worland Restoration and Munagement	\$2,998,049
#31	Napa-Sonoma Marsh Restoration Project	Wetland Restoration and Management	\$4,511,480
#215	Reducing the Introduction and Damage of Aquatic Nonindigenous Species through Outreach and Education Phase 2 Evaluation Of Mercury Transformations And Trophic	Invasive Species	\$179,783
#237	Transfer in The San Francisco Bay/Delta Identifying Critical Processes For The Ecosystem Restoration Program	Mercury	\$2,262 <u>,5</u> 67
<u>#18</u>	Transport, Cycling, and Fate of Mercury and Monomethyl Mercury in the San Francisco Delta and Tributaries—An integrated Mass Balance Assessment Approach	Mercury	\$3,881,215
#69	Estuary Action Challenge Environmental Education Program	Outreach and Environmental Justice	\$120,000
#242	Pyrethroid insecticides: Analysis, Occurrence, and Fate in the Sacramento and San Joaquin Rivers and Delta. The ecological and economic costs and benefits of alternative agricultural practices. Sediment, nutrient, and	Pesticide Toxicity	\$800,000
#213	pesticides in runoff from conservation tillage and cover cropped systems	Pesticide Toxicity	\$1,892,916
#249	Full-Scale Demonstration of Agricultural Drainage-Water Recycling Process Using Membrane Technology	Selenium	\$316.090
#161	Update Individual Ownership Adaptive Management Habitat Plans	Wetland Restoration and Management	\$136,244
#90	Bahia Acquisition and Tidal Wetland Restoration	Wetland Restoration and Management	\$3,345,000
<u>#17</u>	Suisun Marsh Land Acquisition and Tidal Marsh Restoration	Wetland Restoration and Management	\$1,046,400

Table 1: CALFED ERP Proposals recommended by Review Panel that overlap with CEP goals. Shaded background indicates proposals considered as directed actions, light background indicates proposals funded in part or as-is.